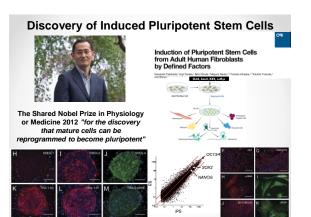
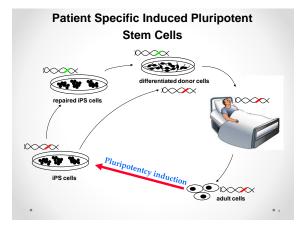
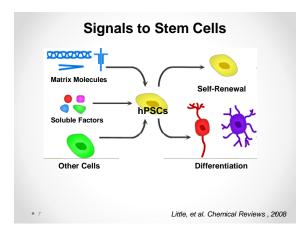
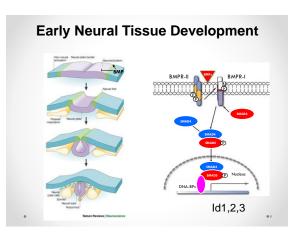
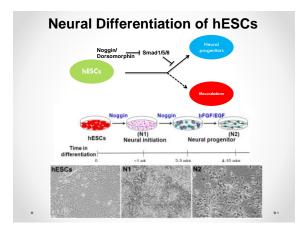

"Development of Neural and Neural Crest Progenitor Cells from Human Pluripotent Stem Cells"

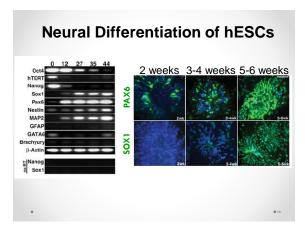

July 23th, 2014

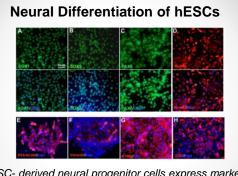

Parinya Noisa, PhD. Suranaree University of Technology

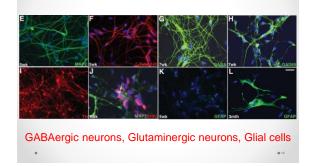


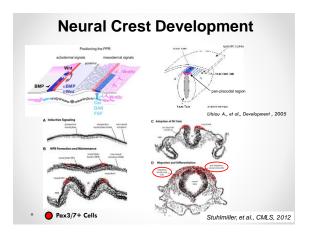


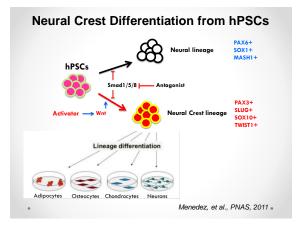


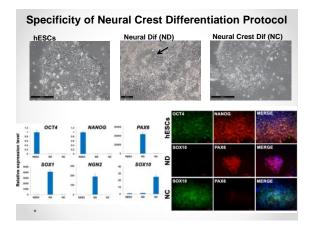


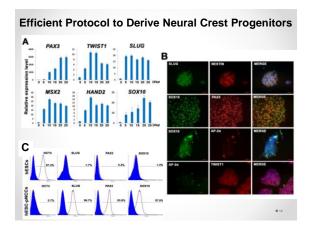


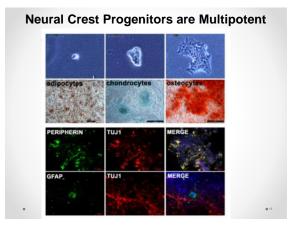


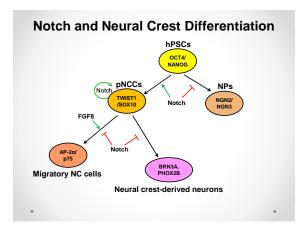





hESC- derived neural progenitor cells express markers for early embryonic neural stem cells – radial glial cells


Differentiation Potential of hESC-Derived Neural Progenitors





Activation of FGF8 and Inhibition of Notch Induce Migratory NC Phenotypes

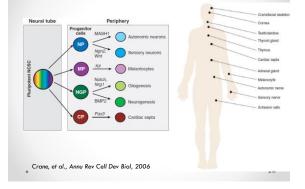
Inhibition of Notch Induces NC-Derived Neurons Image: Strategy of the strateg

To sum up...

• Neuraland neural crest stem cells could be efficiently derived from hESCs.

Both neural and neural crest stem cells could be precursors for various types of neurons

 Robust and efficient protocol for the derivation of premigratory neural crest-like cells (pNCCs)

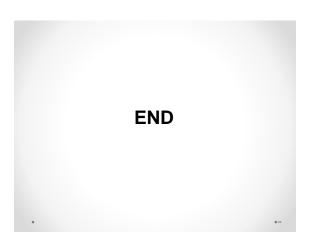

 ${\scriptstyle \bullet}\, pNCCs\,$ are multipotent and able to generate neural crest

derivative cells, including peripheral sensory neurons.

Modulation specific signaling pathways could induce migratory

neural crest cells and possible other neural crest derivatives.

Challenging of Neural Crest Differentiation


Acknowledgments

Department of Physiology, Biomedicum Helsinki Prof. Taneli Raivio Dr. Jahanna Tommiska Carina Lund Hataiwan Chokechuwattanalert Lennu Puhakka

Stem Cell Center, Biomedicum Helsinki Prof. Timo Otonkoski Dr. Timo Tuuri Dr. Milla Mikkola Dr. Ras Trokovic Dr. Kirmo Wartiovaara

Eila Korhonen

Modeling neurological disorders by using iPSCs

Disease	Target cell	Potential to be disease model		Drug test
		Successful differentiated into target cell type	Neuronal pathology	D'ug usi
		Early-onset neurological di	sorders	
Fragile X syndrome	ND	ND	Loss of FMR1 expression	ND
Prader-Willi syndrome	Neurons	Yes	Imprint disorder	ND
Rett's syndrome	Neurons	Yes	Loss of synapses, reduced spine density, smaller soma size	Yes
Familial dysautonomia	Neural crest cells	Yes	Loss of neural crest cells	Yes
Friedreich's ataxaia	Motor neuron	Yes	FXN gene repression	ND
Angelman's syndrome	Neurons	Yes	Imprint disorder	ND
Down's syndrome	Neuron	ND	ND	ND
Spinal muscular atrophy	Motor neurons	Yes	Loss of neuron formation, loss of SMN gene expression	Yes
		Late-onset neurological dis	orders	
Amyotrophic lateral sclerosis (ALS)	Motor neurons	ND	Not shown	ND
Huntington's disease (HD)	Striatal neurons	Yes	Not shown	ND
Parkinson's disease (PD)	Dopaminergic neurons	Yes	Not shown	ND
Alzheimer's disease (AD)	Cholinergic neurons	Yes	Increase ratio of A β 42 to A β 40	Yes
ND: not determined.				
			Kunkanianawan T., et c	J. JBB. 2011