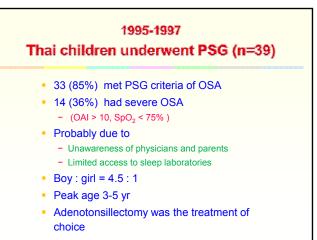
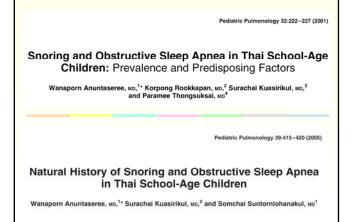


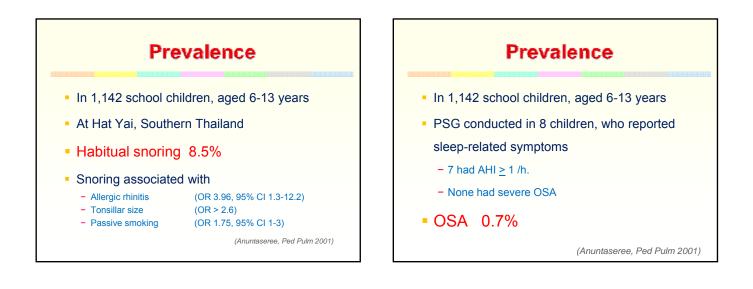
Research on Sleep Disordered Breathing in Children

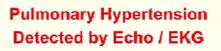
Aroonwan Preutthipan, MD., FCCP. Professor and Directors, Division of Pediatric Pulmonology Ramathibodi Hospital Sleep Disorder Center

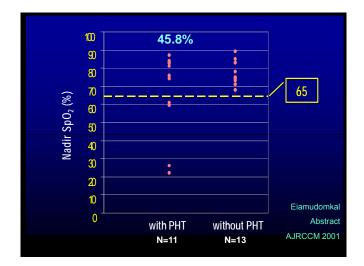

Childhood OSA at Ramathibodi Hospital

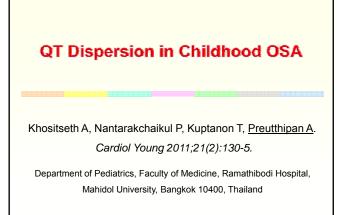
OBSTRUCTIVE SLEEP APNEA SYNDROME IN THAI CHILDREN DIAGNOSED BY POLYSOMNOGRAPHY A Preutilipan, S Suwarjutha and T Chantarojanasiri

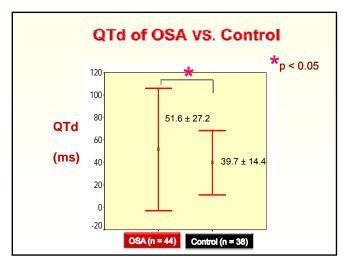

Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

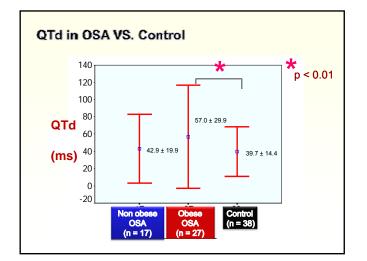

Abstract. Overnight polysonnography was conducted in 19 Thai children with elinieally suspected obstructive sleep apnea syndrome (OSAS) during the years 1994 to 1996. Eighty-five percent of these childrenmethepolysonnographic criteria of poliatic (OSAS, 42.4% among whom had severe OSAS. Male : femaleratio foliden with OSAS was 4.5.1. The peek age at the time of diagnosis was 3 to 4 years. The most common predisposing factor was adminial and transillar hypertophy. Adenoidectomy and/or tosillectomy was the most effective therapeutic option. Recovery of symptoms was observed following surgery and nasal continuous positive airway pressure.

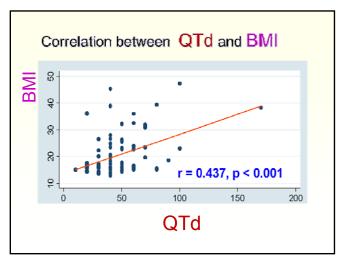

Preutthipan A, et al. Southeast Asian Trop Med Public Health 1997

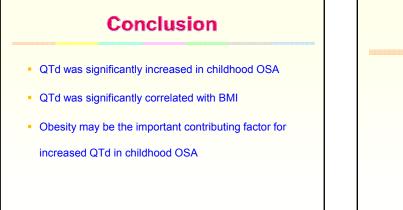






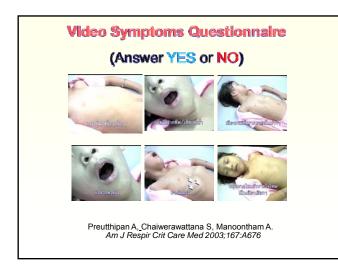

- Found in 11 of 24 children with OSA
- Nadir SpO₂ < 65% was shown to be the most important predictive factor


Eiamudomkal A. et al. Abstract AJRCCM 2001



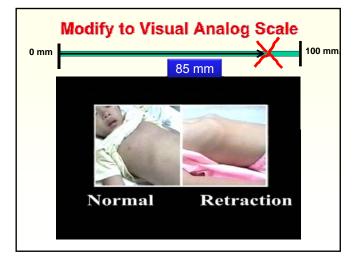
Problems of Childhood OSA in Thailand

- Late diagnosis, more complications
- Shortage of Ped Sleep Lab
 - expensive
 - time and labor consuming
 - costly equipment
 - lack of well-trained sleep specialists and technicians


Acta Pa	ediatr	89:	708-	12.	2000	

Can parents predict the severity of childhood obstructive sleep apnoea?

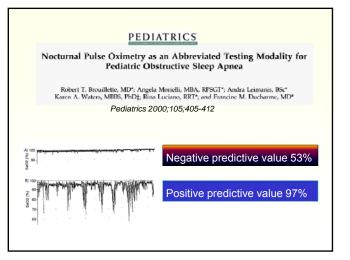
A Preuthipan¹, T Chantarojanasiri¹, S Suwanjutha¹ and U Udomsubpayakul² Division of Paciliatric Pulmonology, Department of Paciliatrics¹, and Statistical Unit, Research Centre², Faculty of Medicine, Ramathiboth Hospital, Bangkok, Thailand

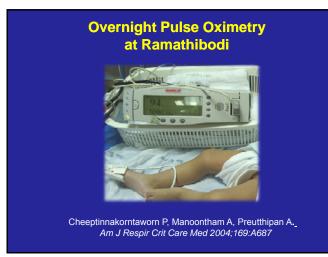

Table 3. Validity of parents' observations in predicting severe OSAS.

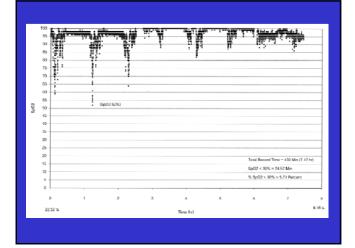
	Sensitivity (%)	Specificity (%)
Observed cyanosis	35	92
Observed obstructive apnoea	61	65
Snoring extremely loudly	52	78
Shakes child to make him/her breathe	64	65
Watches child sleeping, afraid about breathing	85	41

Video Symptoms Questionnaire

Questions	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
1. Chest indrawing and abdominal distension	17	95	83	46
2. Lips turn blue	11	100	100	48
3. Intermittent pause of snoring while breathing very hard	26	86	70	49
4. Mouth breathing	21	96	86	50
5. Struggling to breathe with chest wall retraction	26	91	78	49
6. Intermittent pause of breathing followed by gasping for air	26	96	88	51


Visual	Analog	Scale	Questionnaire	
	_			


	OSA (n=36)	Non OSA (n=19)	p-value
Retraction	22 (0 – 100)	0 (0 – 38)	0.014
Intermittent pause followed by gasping of air	28.5 (0 – 100)	0 (0 – 49)	0.009
Sum of all 6 questions (mm)	130 (0 – 600)	43 (0 – 230)	0.006


Visual Analog Scale Questionnaire

- The entire visual analog scale > 40 mm was justified as a positive test.
- Sensitivity 83.3%, specificity 47.4%, PPV 75% and NPV 60%

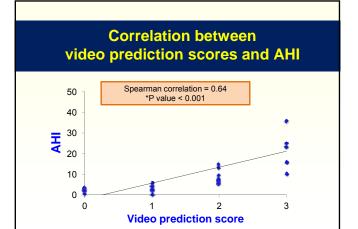
Chuen-im P, Preutthipan A, Kuptanon T, Okascharoen C. Young Investigator Award, CIPP 2008, Nice, France.

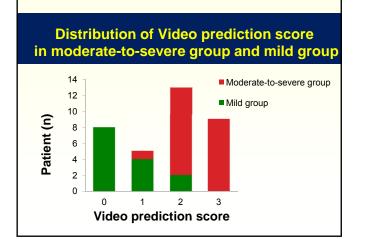
Interpretation Define one cluster of desaturation as: ≥ 10 dots of SpO₂ < 90% in 30 min. period If desaturation ≥ 3 clusters Specificity 100%, Positive predictive value 100% No false positive BUT negative result, without any cluster, cannot rule out OSA False negative 26 % There is 19% chance to have OSA

Can home video clips predict moderate-to-severe OSA in children?

Nongnaphat Chirawutthinan, MD Teeradej Kuptanon, MD Aroonwan Preutthipan, MD, FCCP

Patients were classified	
into 2 groups	

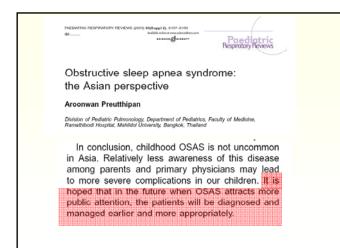

Respiratory events of PSG : Defined according to the American Academy of Sleep Medicine for Scoring of Sleep and Associated Events (2012)


PSG	Diagnosis	
AHI ≥ 10	Moderate to severe	
AHI ≥ 5, < 10	group	
AHI ≥ 1.5, < 5		
AHI < 1.5	Mild group	

ic regression analysis e-to-severe OSA	
Odds ratio 95% CI P valu	Respiratory pattern
9.78 1.1-93.1 0.04*	1. Paradoxical chest movement
9.73 1.2-76 0.03*	2. Continuous snoring
9.73 1.2-76.9 0.03*	3. Subcostal retraction
0.10	0

Video prediction sco applying important d		
Parameters		Scoring
1. Paradoxical chest movement	Yes	1
	No	0
2. Continuous aporing	Vee	4

	No	0	
2. Continuous snoring	Yes	1	
	No	0	
3. Subcostal retraction	Yes	1	
	No	0	
Total video score (Min 0, Max 3)			


Conclusions

- Home video clips are shown to be a promising screening method to predict moderate-to-severe OSA in children.
- Paradoxical chest movement,
 - continuous snoring and
 - subcostal retractions are the 3 most useful respiratory patterns observed on video clips.

Clinical application

- When total prediction score ≥ 2, the patient most likely has moderate-to-severe OSA
- That child should be urgently referred to sleep specialist

