• TH
    • EN
    • Register
    • Login
    • Forgot Password
    • Help
    • Contact
  • Register
  • Login
  • Forgot Password
  • Help
  • Contact
  • EN 
    • TH
    • EN
View Item 
  •   Home
  • สถาบันวิจัยระบบสาธารณสุข (สวรส.) - Health Systems Research Institute (HSRI)
  • Articles
  • View Item
  •   Home
  • สถาบันวิจัยระบบสาธารณสุข (สวรส.) - Health Systems Research Institute (HSRI)
  • Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Application of Decision Tree Algorithms for Diagnosis of the Respiratory System: A Case Study of Pranakorn Sri Ayudthaya Hospital

ดิษฐพล มั่นธรรม; ลี่ลี อิงศรีสว่าง; Dittapol Muntham; Lily Ingsrisawang;
Date: 2553-03
Abstract
The objectives of this study involved (a) the application of methods of knowledge discovery from database using decision tree algorithms for respiratory system diagnosis to classify patients of the Pranakorn Sri Ayudthaya Hospital into three groups: acute upper respiratory tract infection, acute sinusitis, and pneumonia, and (b) the comparison of performance of the three decision tree algorithms, i.e., ID3, C4.5, and CART, for the classification or screening of the patients with the three diseases. The data used in this study came from the medical records of 7,327 out-patients with respiratory diseases who attended Pranakorn Sri Ayudthaya Hospital in the period from 2003 to 2006. The variables considered were age, body temperature, residential area, occupation, and certain symptoms, e.g., rhinorrhea, fever, nasal congestion, periorbital pain, headache, wheezing and coughing. The study methods were knowledge discovery with the employment of ID3, C4.5, and CART decision tree algorithms from the hospital’s medical records and determination of the effectiveness of the three algorithms. The validity of the decision tree algorithms was studied by dividing the data into two sets: training and testing data sets, which were based on the crossvalidation and the percentage split methods. The results of the knowledge discovery method found that, for the patients with acute URI with only seven selected variables and a ratio 70:30 of the training data set and the testing data set, the C4.5 algorithm was the most effective, with a classification accuracy of 92.31 per cent. For the classification of the patients with acute sinusitis with only eight selected variables and ratio 70:30 of the training data set and the testing data set, the C4.5 algorithm was the most effective, with a classification accuracy of 94.70 per cent. For the classification of the patients with pneumonia with only seven selected variables and ratio 50:50 of the training data set and the testing data set, the CART algorithm was the most effective, with a classification accuracy of 94.69 per cent. The results obtained could be used to support the diagnosis of patients with respiratory diseases.
Copyright ผลงานวิชาการเหล่านี้เป็นลิขสิทธิ์ของสถาบันวิจัยระบบสาธารณสุข หากมีการนำไปใช้อ้างอิง โปรดอ้างถึงสถาบันวิจัยระบบสาธารณสุข ในฐานะเจ้าของลิขสิทธิ์ตามพระราชบัญญัติสงวนลิขสิทธิ์สำหรับการนำงานวิจัยไปใช้ประโยชน์ในเชิงพาณิชย์
Fulltext
Thumbnail
Name: hsri-journal-v4n1 ...
Size: 331.0Kb
Format: PDF
Download

User Manual
(* In case of download problems)

Total downloads:
Today: 0
This month: 7
This budget year: 86
This year: 51
All: 1,671
 

 
 


 
 
Show full item record
Collections
  • Articles [1366]

    บทความวิชาการ


DSpace software copyright © 2002-2016  DuraSpace
Privacy Policy | Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

HSRI Knowledge BankDashboardCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjectsSubjectsการบริการสุขภาพ (Health Service Delivery) [619]กำลังคนด้านสุขภาพ (Health Workforce) [99]ระบบสารสนเทศด้านสุขภาพ (Health Information Systems) [286]ผลิตภัณฑ์ วัคซีน และเทคโนโลยีทางการแพทย์ (Medical Products, Vaccines and Technologies) [125]ระบบการเงินการคลังด้านสุขภาพ (Health Systems Financing) [158]ภาวะผู้นำและการอภิบาล (Leadership and Governance) [1281]ปัจจัยสังคมกำหนดสุขภาพ (Social Determinants of Health: SDH) [228]วิจัยระบบสุขภาพ (Health System Research) [28]ระบบวิจัยสุขภาพ (Health Research System) [20]

DSpace software copyright © 2002-2016  DuraSpace
Privacy Policy | Contact Us | Send Feedback
Theme by 
Atmire NV