บทคัดย่อ
ผู้ป่วยที่เข้ารับการรักษาตัวในหอผู้ป่วยวิฤตมีความเสี่ยงต่อการเสื่อมสภาพทางคลินิก เช่น ภาวะหัวใจล้มเหลว ภาวะหัวใจขาดเลือด โดยส่วนใหญ่แพทย์และพยาบาลจะประเมินอาการของผู้ป่วยโดยใช้ข้อมูลทางคลินิก ข้อมูลทางพยาธิวิทยาร่วมกับทางสรีรวิทยา บ่อยครั้งที่ภาวการณ์ทรุดตัวและความผิดปกติของผู้ป่วยนั้นไม่แสดงออกมาโดยตรงทำให้เกิดความล่าช้าในการประเมินความเสี่ยงของผู้ป่วยและการตอบสนองต่อการเปลี่ยนแปลงอาการของผู้ป่วย ทำให้อาจจะนำไปสู่ภาวการณ์เจ็บป่วยที่รุนแรงขึ้นและการสูญเสียชีวิตได้ โดยปกติแล้วผู้ป่วยที่ถูกรักษาตัวในหอผู้ป่วยวิกฤตจะถูกประเมินโดยใช้สัญญาณเตือนภาวะวิกฤต หรือ Early Warning Scores (EWS) ซึ่งเป็นเครื่องมือทางคลินิกที่ถูกใช้กันมากในการประเมินระดับความรุนแรงของผู้ป่วยจากข้อมูลทางสรีระวิทยา ได้แก่ ความดันโลหิตตัวบน อัตราการเต้นของหัวใจ อัตราการหายใจ อุณหภูมิร่างกายและระดับความรู้สึกตัว เพื่อเป็นแนวทางในการติดตามผู้ป่วยและให้ความช่วยเหลือได้อย่างทันที ในปัจจุบันความก้าวหน้าของปัญญาประดิษฐ์ทำให้สามารถวิเคราะห์และค้นหาข้อมูลทางการแพทย์ที่รวบรวมไว้แล้วในระบบเวชระเบียนผู้ป่วยในโรงพยาบาล เพื่อหาความสัมพันธ์ของเหตุการณ์ต่างๆ ที่เปลี่ยนแปลงไปตามในช่วงเวลานั้นๆ สำหรับใช้ในการทำนายความเสี่ยงของผู้ป่วย เช่น การทำนายการเสื่อมสภาพทางคลินิก หรือภาวะหัวใจหยุดเต้นกะทันหัน ซึ่งการพัฒนาปัญญาประดิษฐ์นี้สามารถช่วยลดอัตราการเสียชีวิตของผู้ป่วยและยังช่วยสนับสนุนการตัดสินใจของแพทย์ได้ ซึ่งอาจจะทำให้กระบวนการรักษาผู้ป่วยปลอดภัยขึ้นได้ งานวิจัยนี้มุ่งเน้นไปที่การรวบรวมข้อมูลเพื่อสร้างฐานข้อมูลผู้ป่วยวิกฤตเพื่อการวิจัยของโรงพยาบาลสงขลานครินทร์ Songklanagarind’s Critical Care Database ซึ่งจะเป็นฐานข้อมูลขนาดใหญ่ที่มีข้อมูลของผู้ป่วยวิกฤต โดยอิงข้อมูลจากฐานข้อมูลสาธารณะ ได้แก่ MIMIC Critical Care Database หรือ eICU Collaborative Research Database ของ MIT และการพัฒนาอัลกอริทึมการเรียนรู้ของเครื่อง (Machine Learning) สำหรับการประเมินความเสี่ยงทางคลินิกของผู้ป่วยหนัก โดยใช้ตัวแปรข้อมูลทางสรีรวิทยาจากระบบฐานข้อมูลของโรงพยาบาล และระบบติดตามผู้ป่วยส่วนกลาง (Patient Monitoring Systems) โดยใช้ชุดข้อมูลสาธารณะ (Public Datasets) ร่วมกับ Songklanagarind’s Critical Care Database ซึ่งจะทำให้อัลกอริทึมที่ได้สามารถทำงานได้จริงในเชิงคุณภาพของโรงพยาบาลสงขลานครินทร์
บทคัดย่อ
Patients in critical care are at risk of clinical deteriorations such as congestive heart failure, when the heart muscle could not pump the blood as good as it should be, and sudden cardiac arrest, which is caused by the disruption of the heart’s pumping function These clinical deteriorations often appear without any warning. They can cause patients losing consciousness, having clinical complications, or death. A timely treatment is necessary after such complications. The early detection of clinical deteriorations can both improve patient outcomes and reduce the utilization of healthcare resources. Many early warning scores (EWSs) are designed to identify patients at risk of deterioration. The Modified Early Warning Scores (MEWS), for example, utilizes patient data including blood pressure, heart rate, respiration rate, body temperature and patient’s responses in order to identify patients according to their severity. Clinical staff can use the MEWS score as a guide to monitor the patients and give help immediately if needed. This research focuses on the development of machine learning algorithms for the identification of deteriorating patients in intensive care wards with physiological parameters acquired from the hospital information system and the central patient monitoring system. In contrast to other studies in which the algorithms were developed only on public datasets, our study utilizes both public datasets and local clinical dataset from Songklanagarind’s Hospital with an aim to make our algorithms work in local narratives. In the first part, we proposed a data-driven framework for predicting the risk of mortality that combines high-accuracy recurrent neural networks with interpretable explanations. Our model processes time-series of vital signs and laboratory observations to predict the probability of a patient’s mortality in the intensive care unit (ICU). We investigated our approach on three public critical care databases: Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC-III), MIMIC-IV, and eICU. Our models achieved an area under the receiver operating characteristic curve (AUC) of 0.87–0.91. Our approach was not only able to provide the predicted mortality risk but also to recognize and explain the historical contributions of the associated factors to the prediction. The explanations provided by our model were consistent with the literature. Patients may benefit from early intervention if their clinical observations in the ICU are continuously monitored in real time. In the second part, we used the recurrent neural network (RNN) model to predict the risk of occurrence of clinical conditions. Our results varied with an area under the receiver operating characteristic curve (AUROC) of 0.55-0.73 depending on the clinical condition. Our model can provide interpretive data to explain the influence of model prediction parameters and increase confidence in the model. The clinical staff was informed before the clinical conditions and could determine the treatment plan to achieve a better outcome for the patient.