• TH
    • EN
    • สมัครสมาชิก
    • เข้าสู่ระบบ
    • ลืมรหัสผ่าน
    • ช่วยเหลือ
    • ติดต่อเรา
  • สมัครสมาชิก
  • เข้าสู่ระบบ
  • ลืมรหัสผ่าน
  • ช่วยเหลือ
  • ติดต่อเรา
  • TH 
    • TH
    • EN
ดูรายการ 
  •   หน้าแรก
  • สถาบันวิจัยระบบสาธารณสุข (สวรส.) - Health Systems Research Institute (HSRI)
  • Research Reports
  • ดูรายการ
  •   หน้าแรก
  • สถาบันวิจัยระบบสาธารณสุข (สวรส.) - Health Systems Research Institute (HSRI)
  • Research Reports
  • ดูรายการ
JavaScript is disabled for your browser. Some features of this site may not work without it.

การใช้แมชชีนเลิร์นนิงอัลกอริทึมและการเรียนรู้เชิงลึกเพื่อคาดการณ์พื้นที่เสี่ยงต่อการจราจรบนถนน กรณีศึกษากรุงเทพมหานคร

มรกต วรชัยรุ่งเรือง; Morakot Worachairungreung; กันยพัชร์ ธนกุลวุฒิโรจน์; Kunyaphat Thanakunwutthirot; ณยศ กุลพานิช; Nayot Kulpanich; พรเพิ่ม แซ่โง้ว; Pornperm Saengow;
วันที่: 2569-01
บทคัดย่อ
การวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาแบบจำลองคาดการณ์พื้นที่เสี่ยงต่อการเกิดอุบัติเหตุทางถนนในเขตกรุงเทพมหานคร โดยใช้เทคนิคแมชชีนเลิร์นนิงและดีปเลิร์นนิงกับข้อมูลเหตุอุบัติเหตุจากสำนักงานตำรวจแห่งชาติ ระหว่างปี พ.ศ. 2563–2567 รวมกว่า 70,000 เหตุการณ์ การวิเคราะห์ประกอบด้วย (1) การวิเคราะห์เชิงพรรณนาและเชิงพื้นที่ เพื่อระบุปัจจัยที่มีอิทธิพลต่อการเกิดอุบัติเหตุ และ (2) การสร้างแบบจำลองคาดการณ์ด้วยอัลกอริทึม Random Forest, XGBoost และ Logistic Regression โดยใช้ตัวแปรด้านเวลา พื้นที่ ประชากร และสภาพแวดล้อม ผลการศึกษา พบว่าช่วงเวลา 00.00–06.00 น. เป็นช่วงเสี่ยงสูงสุด กลุ่มเสี่ยงหลักคือ ผู้ขับขี่รถจักรยานยนต์อายุ 20–25 ปี และพื้นที่เสี่ยงสูง ได้แก่ เขตลาดกระบัง บางขุนเทียน ประเวศ ดอนเมือง และมีนบุรี ปัจจัยเชิงพื้นที่ที่มีอิทธิพลสูง ได้แก่ ความหนาแน่นของจุดสนใจ (POI) เช่น โรงเรียน ร้านสะดวกซื้อ และทางแยก แบบจำลอง Random Forest ให้ค่า ROC-AUC = 0.76 และ Balanced Accuracy = 0.72 แสดงถึงความสามารถในการจำแนกพื้นที่เสี่ยงได้อย่างมีประสิทธิภาพ ข้อเสนอเชิงนโยบาย ได้แก่ การจัดตั้ง “เขตปลอดภัยทางถนน (Road Safety Zones)” รอบสถานศึกษาและจุดชุมชน การเพิ่มระบบไฟส่องสว่างและป้ายเตือนในพื้นที่เสี่ยง การสร้างระบบเฝ้าระวังอุบัติเหตุแบบเรียลไทม์ และการจัดตั้งคณะกรรมการข้อมูลอุบัติเหตุระดับชาติ เพื่อยกระดับความปลอดภัยทางถนนของประเทศไทย

บทคัดย่อ
This research aims to develop predictive models to identify road traffic accident risk zones in Bangkok using Machine Learning and Deep Learning techniques. Accident data from the Royal Thai Police (2020–2024) comprising over 70,000 cases were analyzed through descriptive and predictive modeling approaches. Random Forest, XGBoost, and Logistic Regression algorithms were employed with temporal, spatial, demographic, and environmental variables. The results indicate that the midnight to early morning period (00:00–06:00) posed the highest risk, with motorcycle riders aged 20–25 years being the most vulnerable group. High-risk districts included Lat Krabang, Bang Khun Thian, Prawet, Don Mueang, and Min Buri, often located in outer Bangkok areas with complex road networks and logistics routes. The Random Forest model achieved the best predictive performance (ROC-AUC = 0.76, Balanced Accuracy = 0.72). Spatial analysis further revealed high–high clusters of fatal crashes around major intersections, schools, and convenience stores. Policy recommendations include establishing Road Safety Zones, improving street lighting and traffic signage, developing a real-time crash risk monitoring system, and creating a National Crash Data Committee to integrate road safety data across agencies.
Copyright ผลงานวิชาการเหล่านี้เป็นลิขสิทธิ์ของสถาบันวิจัยระบบสาธารณสุข หากมีการนำไปใช้อ้างอิง โปรดอ้างถึงสถาบันวิจัยระบบสาธารณสุข ในฐานะเจ้าของลิขสิทธิ์ตามพระราชบัญญัติสงวนลิขสิทธิ์สำหรับการนำงานวิจัยไปใช้ประโยชน์ในเชิงพาณิชย์
ฉบับเต็ม
Thumbnail
ชื่อ: hs3337.pdf
ขนาด: 4.149Mb
รูปแบบ: PDF
ดาวน์โหลด

คู่มือการใช้งาน
(* หากไม่สามารถดาวน์โหลดได้)

จำนวนดาวน์โหลด:
วันนี้: 1
เดือนนี้: 1
ปีงบประมาณนี้: 1
ปีพุทธศักราชนี้: 1
รวมทั้งหมด: 1
 

 
 


 
 
แสดงรายการชิ้นงานแบบเต็ม
คอลเล็คชั่น
  • Research Reports [2540]

    งานวิจัย


DSpace software copyright © 2002-2016  DuraSpace
นโยบายความเป็นส่วนตัว | ติดต่อเรา | ส่งความคิดเห็น
Theme by 
Atmire NV
 

 

เลือกตามประเภท (Browse)

ทั้งหมดในคลังข้อมูลDashboardหน่วยงานและประเภทผลงานปีพิมพ์ผู้แต่งชื่อเรื่องคำสำคัญ (หัวเรื่อง)ประเภททรัพยากรนี้ปีพิมพ์ผู้แต่งชื่อเรื่องคำสำคัญ (หัวเรื่อง)หมวดหมู่การบริการสุขภาพ (Health Service Delivery) [639]กำลังคนด้านสุขภาพ (Health Workforce) [102]ระบบสารสนเทศด้านสุขภาพ (Health Information Systems) [290]ผลิตภัณฑ์ วัคซีน และเทคโนโลยีทางการแพทย์ (Medical Products, Vaccines and Technologies) [129]ระบบการเงินการคลังด้านสุขภาพ (Health Systems Financing) [162]ภาวะผู้นำและการอภิบาล (Leadership and Governance) [1330]ปัจจัยสังคมกำหนดสุขภาพ (Social Determinants of Health: SDH) [234]วิจัยระบบสุขภาพ (Health System Research) [28]ระบบวิจัยสุขภาพ (Health Research System) [22]

DSpace software copyright © 2002-2016  DuraSpace
นโยบายความเป็นส่วนตัว | ติดต่อเรา | ส่งความคิดเห็น
Theme by 
Atmire NV